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Abstract. This article is dedicated to reviewing the recent inelastic x-ray scattering (IXS) work
on the high-frequency collective dynamics in liquid water. The results obtained with the IXS
technique are directly compared with existing ones from inelastic neutron scattering (INS) and
molecular dynamics simulation investigations that were carried out with the aim of achieving an
understanding of the collective properties of water at the microscopic level. The IXS work has
made it possible to demonstrate experimentally the existence, in the range of exchange momentum
(Q) examined (1–10 nm−1), of two branches of collective modes: one linearly dispersing with
Q (with the apparent sound velocity of≈3200 m s−1) and the other at almost constant energy
(5–7 meV). It has been possible to show that the dispersing branch originates from an upwards
bend of the ordinary sound branch observed in low-frequency measurements. The study of this
sound velocity dispersion, marking a transition from the ordinary sound,co, to the ‘fast’ sound,
c∞, as a function of temperature, has made it possible to relate the origin of this phenomenon to a
structural relaxation process, which presents many analogies with those observed for glass-forming
systems. The possibility of estimating from the IXS data the value of the relaxation time,τ , as a
function of temperature leads to a relating of the relaxation process to the structural rearrangements
induced by the making and breaking of hydrogen bonds. In this framework, it is then possible to
recognize a hydrodynamical ‘normal’ regime, i.e. one for which the density fluctuations have a
period of oscillation that is on a timescale that is long with respect toτ , and a solid-like regime
in the opposite limit. In the latter regime, the density fluctuations ‘feel’ the liquid as frozen and
the sound velocity is much higher: this is ‘fast’ sound, whose velocity is equivalent to the sound
velocity found in crystalline ice Ih.

1. Introduction

The investigation of the collective dynamics in liquids, and fluid systems in general, has
constituted a very active field of research since the beginning of modern science. The absence
of translational invariance, as well as the interplay between the collective properties such as
density, charge, and concentration fluctuations, and other phenomena such as particle diffusion,
particle rotations, and the degrees of freedom associated with the internal structure of the
particle itself, are inherent to the fluid state. In fact, they lie at the origin of many macroscopic
properties which are characteristic of the fluid, and differentiate this state of matter from
the solid and, in particular, from the crystalline phases. These properties have stimulated
many efforts, both theoretical and experimental, to characterize the dynamical and structural
properties of fluids over the widest possible regions of time and length. In this respect, the
relaxationprocess is one of the most important concepts for the understanding of the atomic
dynamics in fluids. In its definition, it contains intrinsically a temporal and/or a spatial notion
that, for a specific relaxation process, implies a characteristic timeτR and/or a characteristic
length ξR. The dynamical properties of the fluid will be noticeably different according to
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whether one considers dynamics that have a timescale and/or length scale (i) long or (ii) short
with respect toτR and/orξR for the relaxation process considered. In turn, in the same fluid,
there can be different relaxation processes that may have characteristic time domains that
are well separated, or ones that overlap in some common region, giving rise to interesting
cooperative phenomena. The study of the density (charge, concentration,. . . ) fluctuations
provides a direct means for identifying the presence and the character of a relaxation process.
Moreover, studies of the relaxation as a function of the thermodynamic state of the fluid may
allow one to understand the physical origin of the relaxation process itself.

A key quantity, from both theoretical and experimental points of view, for the determin-
ation of the collective dynamics associated with density fluctuations is the dynamical structure
factor,S(Q,E). It is defined as the Fourier transform in space and time of the particle-density
pair correlation function:

S(Q,E) = 1

2π

1

N

∑
IN

pIN

∫
dt eiEt/h̄

∑
m,n

〈IN |eiQ·Rm(t)e−iQ·Rn(0)|IN 〉. (1)

Here N is the number of particles in the system whose positions at timet are Rn(t)
(n = 1, . . . , N). |IN 〉 is a state of the system, while the sum over these states, each with
populationpIN , gives the statistical average.

S(Q,E), being the power spectrum in energyE of theQ-component of the density fluct-
uationsρQ(t),

ρQ(t) = 1√
N

∑
n

eiQ·Rn(t) (2)

exhibits features of bothE andQ which correspond to the characteristic excitations of the
system. From the theoretical point of view, one can derive the general expression forS(Q,E) in
two limit cases, corresponding either toQ→ 0 or toQ→∞. In the first case, one considers
the medium as a continuum and the excitations on so long a timescale that the system can
be assumed to be in thermodynamical equilibrium. Under such approximations, one builds
up the hydrodynamics theory from the equations of conservation of energy, momentum, and
number of particles. The solution is found for a specific system by means of another set of
equations, the constitutive equations, that, by introducing transport coefficients such as the
bulk and shear viscosities and the heat conductivity, allow one to derive an explicit expression
for S(Q,E) [1–3]. This is constituted of three lines, referred to as the Brillouin triplet, which
are centred atE = 0 andE = ±h̄coQ, and correspond respectively to the entropy fluctuations
and to the compression wave propagating with the adiabatic sound velocityco. The two lines
atE = ±h̄coQ correspond to the energy loss and energy gain, and have a width

(DV + (γ − 1)DT )Q
2

controlled by the longitudinal kinematic viscosityDV , the thermal diffusion coefficientDT ,
and the specific heat ratioγ . The width of the line centred atE = 0 is proportional toDTQ

2.
In the opposite limit ofQ→∞, one assumes the validity of the impulse approximation, where
the final state of the excited particle has a kinetic energy much higher than the potential energy,
and the wavefunction is therefore well represented by a plane wave. Under these conditions,
the lineshape ofS(Q,E) reflects the initial-state momentum distribution, i.e., in a classical
fluid, the Boltzmann distribution. ThenS(Q,E) reduces to a Gaussian centred at the recoil
energyh̄2Q2/2M, with standard deviation

σ = h̄Q
√
KBT/M

whereM is the particle mass. In this limit, the dynamics becomes that of free particles
between successive collisions. In these two extreme limits, reflecting idealized situations, one
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can neglect the details of the interactions among particles and their effects on the dynamics. On
the other hand, the wish to obtain an understanding of these interactions constitutes the main
motivation of modern studies on the dynamics of fluids and disordered systems in general.

The investigation of the collective dynamics in disordered systems, away from the hydro-
dynamic and single-particle limits outlined above, becomes of particular interest when one
considers an intermediate timescale and an intermediate length scale—more specifically, when
one considers distances comparable to those that characterize structural correlations among
particles, and times comparable to the lifetimes of these correlations. On this intermediate
scale, one expects to observe a large modification of the dynamics when the times considered
are either much longer or much shorter with respect to those required by the system to relax
from a spontaneous density fluctuation back into its equilibrium state.

The dynamics in this intermediate region is studied, theoretically, by attempting to extend
the hydrodynamics theory to small distances and short times, numerically, employing simul-
ation methods based on the integration of the equations of motion of an ensemble of particles
interacting via a specific model potential, and, experimentally, by using scattering methods to
determine the dynamic structure factor directly.

Quite generally, as long as one considersQ-transfers that are small with respect to
Qm ≈ 2π/d, whered is the mean interparticle distance andQm is theQ-value corresponding to
the first maximum in the static structure factorS(Q), one finds thatS(Q,E) preserves a three-
mode lineshape as in the hydrodynamic limit. This behaviour is predicted by the generalized
hydrodynamics and by the molecular hydrodynamics theories, obtained as a generalization
of the hydrodynamics theory by making the assumption of aQ- andE-dependence of the
parameters entering into the constitutive equations. Technically, this is accomplished by the
introduction of the memory function formalism, which allows one to find evidence for the
coupling between the density fluctuations and the relaxation processes active in the system.
The continuous evolution from the Brillouin triplet in the hydrodynamic limit towards a more
complex triplet has been found in a large number of molecular dynamics (MD) simulations.
For example, in the case of simple monatomic fluids, this evolution has been confirmed by
several MD studies performed with both hard spheres [4] and Lennard-Jones potentials [5].
Experimentally, using Brillouin light scattering (BLS) spectroscopy, one can studyS(Q,E)

up toQ-values of the order of 0.04 nm−1, i.e. well within the expected range of validity of the
hydrodynamics theory. However, even in this small-Q range, one finds the need for energy-
dependent transport coefficients to be associated with the presence of a relaxation process with
a characteristic timeτ in thenanosecond range. This need manifests itself in the modifications
of the Brillouin linewidth and of the speed of sound from the hydrodynamic valueco to a higher
valuec∞, when the excitation frequencyE/h̄ is comparable with 1/τ : the dispersion ofc is
typically observed on changing the thermodynamic state of the system (T ), and thereforeτ .

The extension to largerQ- andE-values, and in particular up toQ ≈ Qm, had been
experimentally more difficult until inelastic x-ray scattering (IXS) spectroscopy with meV
energy resolution was developed. The highly developed inelastic neutron scattering (INS)
technique cannot be easily applied atQ-transfers smaller than 10 nm−1 for typical liquid
systems because the required energy transfers are too large for standard INS spectrometer
set-ups.

In this article we aim to give a review on our present understanding of the high-
frequency collective dynamics in liquid water. This study has benefited from the experimental
work performed using the IXS method, which has made it possible to determineS(Q,E)

experimentally over a wide range of temperatures and pressures in the 1–20 nm−1 Q-transfer
range, i.e. up toQm = 20 nm−1 from well below that value. We are interested here in
the ‘normal’-liquid state, and we will not enter into the very interesting debates (i) on the
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anomalies of liquid water [6], such as the origin of the density maximum atT = 4 ◦C and
of the specific heat increasing with decreasing temperature in the supercooled region, (ii)
on the existence of a spinodal transition [7], and (iii) on the presence of a second critical
point which would allow, in water, the existence of one glassy and two liquid phases [8].
It is our hope that a good understanding of the dynamics of normal water, considered to be
in the liquid phase at temperaturesT above the melting point, may also contribute to the
understanding of these anomalies. Our aim, however, is to determine experimentally the
high-frequency dynamics in this very important hydrogen-bonded liquid, and to relate the
results to the dynamics of crystalline ice, to liquid water in the hydrodynamic limit, and to the
phenomenology characteristic of other liquid systems in the presence of a relaxation process.

Further motivation for the present work is provided by the long-standing issue of the
existence of a fast-sound mode in liquid water. This mode, whose sound velocity is more than
twice that of ordinary sound, was predicted by MD simulations and some INS experiments.
Its existence, in addition to the low-temperature anomalies, has contributed to water being
considered to be a quite special system.

The main topics that we will review and address in this article are:

(a) The experimental study of this fast-sound mode, and the determination of theQ-region
where it exists.

(b) The relation of this mode to the tetrahedral local structure of water, and to the longitudinal
acoustic dynamics in the crystalline phase of ‘normal’ hexagonal ice Ih.

(c) The relationship to the ordinary sound mode, and the evolution from the hydrodynamic
behaviour to that observed in theQ ≈ Qm region.

(d) The comparison of the IXS results with the body of MD simulations on liquid water, and
with existing data taken using the BLS and INS methods.

This effort will summarize the IXS work on this topic, and will try to put it in perspective with
other methods, and with the previous knowledge on the arguments considered.

It is our hope that the reader will be convinced that this work on the high-frequency
dynamics in liquid water has clarified many aspects of the collective dynamics of this system.
In particular, we will show that the transition from ordinary to ‘fast’ sound is the consequence
of a structural relaxation process, and that it is possible to ‘read’ the water dynamics in the
same framework as is utilized for glass-forming liquids. This structural relaxation process
is characterized by a relaxation time,τ , whose value, estimated from the IXS data, strongly
depends on the thermodynamic state of the system. This time is shown to be related to the
formation and breaking of hydrogen bonds. The density fluctuations on a timescale short with
respect toτ propagate in a ‘rigid’ network of molecules bound to each other by hydrogen bonds,
and therefore the dynamics is very similar to that in the solid phase. This is characterized by
a ‘fast’ velocity of sound, and one can observe it in the liquid excitations whose origin can be
related to the transverse phonons in the crystal. In the other limit, when the density fluctuations
are slow with respect toτ , and therefore the molecules have time to rearrange themselves after
the action of the perturbation (the local change of density associated with the propagating
density fluctuation), the fluctuations ‘feel’ an average, rather than an instantaneous, structure,
and the system behaves as a normal liquid.

The article is organized into seven more sections. In the next section we will summarize
the knowledge that existed on the high-frequency dynamics in liquid water before the beginning
of the IXS work. In section 3 we will introduce the inelastic x-ray scattering method and its
capabilities in the study of the collective dynamics in disordered systems. In section 4 we will
report the IXS data on liquid water at ambient conditions, which show the existence of the
fast-sound mode and, on the basis of the small isotope shift between H2O an D2O, prove that
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this mode is a centre-of-mass property. In section 5, the results for the liquid are compared to
those for the solid, and this will highlight a striking equivalence between the high-frequency
longitudinal dynamics of the two phases. Moreover, this comparison will allow us to relate
a feature observed inS(Q,E) for the liquid to the transverse dynamics in the solid, and this
will make the equivalence between the two systems even more evident in the momentum-
and energy-transfer regions considered. In section 6, the IXS data are compared to a large-
scale MD calculation, and this analysis will substantiate even more the finding that, once the
‘fast’-sound regime is reached, the liquid has a collective dynamics very similar to that of a
solid, and even shows a transverse dynamics that in a normal liquid is expected to be only
relaxational-like. In section 7, we will address the very important point of the origin of the
relaxation process responsible for the transition fromco to c∞. The study of the transition as
a function of temperature at constant density in the−20–300◦C temperature range will allow
us to identify a phenomenology very similar to the one commonly observed for glass-forming
liquids in theQ–E range typically spanned in BLS experiments. The observed temperature
dependence of the transitionco → c∞ can be interpreted, in fact, in terms of the existence
of a structural (α-) relaxation. The analysis of the energy of the excitations as a function of
Q andT will allow us to derive the values ofτ which do lead to an Arrhenius behaviour in
the temperature range considered, and for which the energy is comparable to the hydrogen
bond energy. These findings will bring us to the conclusions of the article, summarized in the
last section. They lead us to believe that the high-frequency dynamics of liquid water can be
successfully described in the same framework as that utilized for glass-forming liquids, and
that it is the formation and breaking of hydrogen bonds that leads to the difference between the
dynamics observed at high (solid-like) momentum transfers and that observed at low (liquid-
like) momentum transfers.

2. The high-frequency dynamics in liquid water

In 1974 Rahman and Stillinger [9], while analysing the results of their molecular dynamics
simulations on liquid water, discovered the existence of two modes inS(Q,E) in the 3–6 nm−1

Q-region. These modes were found at energies such that, if associated with propagating modes
E/h̄ = cQ, they would give velocities of soundc ≈ 1500 m s−1 and≈3000 m s−1. The first
value is similar to the ordinary speed of sound in water at ambient conditions. The mode
giving the other value, which also showed the most marked linear dispersion inQ, was, at
that time, interpreted as a band of excitations associated with the hydrogen-bond network, and
propagating with a much higher sound velocity: the ‘fast’ sound. These observations were
limited to a smallQ-region, probably too small to firmly establish the effective existence of
a linear relation between peak energy and momentum of the excitations in the two branches,
E/h̄ = cQ.

The simulation experiment of Rahman and Stillinger, whose results are reported in figure 1,
stimulated a lot of interest in this issue, motivating further simulation work, as well as
attempts to experimentally determineS(Q,E) in the region of interest. Two experimental
determinations of the coherent dynamic structure factor of liquid D2O were in fact performed
using neutron spectroscopy, in 1978 and in 1985. The first one was executed by Bosi and
collaborators [10] using a triple-axis spectrometer on the TRIGA reactor (Enea-Casaccia,
Rome, Italy). The kinematics region explored in this experiment, however, did not allow the
excitations branch associated with the fast sound to be reached. The low-energy band was
nevertheless observed, but, as seen in figure 1, it showed a very weakQ-dependence. The
excitation energy observed at the lowestQ-value of 5 nm−1 is consistent with a speed of sound
of 1500 m s−1, and therefore with the low-energy mode of the Rahman and Stillinger MD
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simulation. In a second experiment, performed in 1985 by Teixeira and collaborators [11] on
the IN8 spectrometer at the ILL (Grenoble, France), the use of higher-energy neutrons allowed
the extension of the kinematics region up to that of the expected dispersion law of the fast
sound. In this experiment it was indeed possible to demonstrate the existence of a collective
excitation propagating withc ≈ 3300 m s−1 in theQ = 3.5–6 nm−1 region. The low-energy
band seen by Bosiet al [10], however, was not observed in this second experiment, because
of the limited energy resolution (1E = 4.5 meV) and the large quasi-elastic contribution.

Figure 1. The open symbols represent the excitation energies for the normal (open diamonds)
andfast(open circles) sound found by Rahman and Stillinger [9] by MD simulation with the ST2
potential. The full symbols (full diamonds [10]; full circles [11]) are the corresponding experimental
findings. The dashed and dotted curves are the kinematics limits of the inelastic neutron scattering
experiments for the incident neutron energy and the minimum scattering angle utilized in the two
experiments. Only theE–Q region that lies below the curves can be accessed experimentally.
The dashed curve indicates the upper limit of the kinematics region of the experiment of Bosi
et al [10]; it is clear that the high-frequency mode was not accessible. The dotted curve indicates
the upper limit of the kinematics region accessible to the experiment of Teixeiraet al [11], where
Ei = 80 meV andθ = 2◦. It is evident that in this case the additionally accessible region is
very valuable for getting information on the pattern of the excitations in liquid water. However,
the increased energy resolution (4.5 meV), as a consequence of the higher energy of the incoming
neutrons, was not sufficient to allow one to detect the low-energy mode in this experiment.

In figure 1, together with the MD and INS data, we also report the kinematics limits of the
two neutron experiments. In the experiment of Bosiet al [10] the kinematics limit imposed
by the scattering geometry and the neutron energy utilized was such that it was not possible
to access the high-energy excitations. In the experiment of Teixeiraet al [11] it was possible
to access the fast-sound mode in the 3.5–6 nm−1 Q-range, but, with an energy resolution of
4.5 meV, it was not possible to detect the low-energy mode at the same time.

These results were followed by a large number of numerical simulations [12–21], carried
out with the aim of clarifying the origin of the fast sound, and, in particular, of assessing
whether, at high frequencies, there are two independent propagating collective dynamics in
liquid water, and establishing what the relationship between the fast-sound mode and the
ordinary sound branch observed at lowQ-values is. The results of these MD simulations can
be summarized as follows:

• The low-energy branch found by Rahman and Stillinger, in agreement with the
experimental data of Bosiet al, has an energyE = 4–6 meV, and its dispersion with
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Q is very weak. This branch is more evident in those simulations that utilize potential
models that tend to overestimate the tetrahedral structure of liquid water, such as the ST2
and SPC models. This band has been tentatively assigned to an O–O–O-bending localized
vibration [16].
• It is not possible to exclude the possibility that the high-energy branch, arising from a

collective dynamics propagating with a speed of sound of≈3300 m s−1, is the form of the
normal-sound branch that evolves at high frequency, observed in theQ = 0 limit, where
it propagates with a speed of sound of≈1500 m s−1. Such dispersion withQ of the sound
velocity may have its origin in the details of the intermolecular interaction, and its large
value may be due to the strong electrostatic O–H intermolecular interaction, leading to an
average O–O distance well below the Lennard-Jonesσ -value for oxygen atoms [18].
• The analysis of the partial structure factorsSOO(Q,E) andSHH(Q,E) indicates that the

hydrogen dynamics is confined to much higher energies (above 50 meV), and therefore it
is unlikely to be associated with the fast-sound branch [15].

The hypothesis that the fast sound is simply the continuation to highQ-values of the
normal sound is sustained by comparison with other liquids, and in particular with glass-
forming liquids. In these systems one observes systematically a jump in the sound velocity at
Q-values such that the excitation frequency is comparable to the inverse of the relaxation time.
Indeed, an analysis in this direction of the Brillouin light scattering spectra for H2O [22, 23]
confirms this possibility, predicting a large increase in the speed of sound at highQ.

Fairly recently, another neutron experiment was performed, in 1994, on the spectro-
meter MARI at the RAL (Chilton, Didcot, UK) [24]. Limitations on the available kinematics
region, however, again prevented information on the fast-sound branch from being obtained.
Nevertheless, it confirmed the results obtained sixteen years before by Bosiet al [10].

In figure 2, we summarize in the planeQ–E the positions of the excitations in liquid water
as derived from selected MD studies and from the neutron experiments. We also report, as a
chain line, the linear dispersion that one would find if the speed of sound in the high-frequency

Figure 2. The excitation energies for thefast-sound mode derived from selected MD studies (dotted
squares [18]; crossed squares [19]) are reported as functions ofQ together with the corresponding
quantities from figure 1 (open and full symbols). The two lines are the dispersion relations expected
for the continuation to highQ of the hydrodynamic sound modes (≈1500 m s−1) and thefast-sound
dispersion derived from the experiment of Teixeiraet al [11] (≈3300 m s−1).
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region were to be the same as that in theQ = 0, limit, i.e. the ordinary soundco = 1500 m s−1.
In summary, the situation up to 1994 was not satisfactory or clear. The reason for this

was, on the one hand, the large scatter of results in the numerical simulation work for different
interaction potential models, and, on the other hand, the kinematics limitations of the neutron
spectroscopy studies, which prevented simultaneous access to theQ–E regions of the two
branches. This would have provided definitive evidence for the existence of the two modes,
and it would have allowed the instigation of an experimental investigation aiming to reveal
their origin, and, more generally, their relation to the properties of the liquid state. Within this
context, the use of x-rays as a spectroscopic probe alternative to neutrons can give, and in fact
has given, important new information on the problem. With this motivation, the IXS technique
has been applied to study the high-frequency dynamics of liquid water, and this work will be
reviewed in the following sections.

3. Inelastic x-ray scattering with milli -electron volt energy resolution

The study in condensed matter physics of atomic density fluctuations on the scale of inter-
particle separations is, traditionally, the domain of neutron spectroscopies. The principal
reason for which neutrons are particularly suitable for these studies is the very good matching
between the phase space of thermal neutrons and that of phonon-like collective excitations.
In fact, the energies of neutrons with wavelengths of the order of interparticle distances are
about 100 meV, and this value is comparable to the energies of phonons with wavelengths
in the nanometre range. As a consequence, one can determineS(Q,E) without requiring
an excessive relative energy resolution in the spectrometers, and therefore one utilizes very
efficiently the intensity of the source.

In principle, x-rays can also be used to determineS(Q,E). The inelastic x-ray scattering
cross-section, under certain circumstances, has an expression formally very similar to that
valid for neutrons, and the coupling of x-rays and neutrons to the density fluctuations is of
the same order of magnitude. This can be understood by considering the complementarity
between x-ray and neutron Bragg diffraction, and extending it to the dynamics, i.e. to the
density fluctuations around the static structure. The x-ray scattering cross-section is derived
by considering the interaction between the electrons and the x-ray electromagnetic field. In the
weak relativistic limit, the interaction Hamiltonian is composed of four terms. Two describe
the diamagnetic (the Thomson term) and paramagnetic (the photoelectric absorption term)
coupling of the photon field to the electron current. The other two, considerably smaller,
describe the magnetic couplings. In the present context we will consider only the charge
scattering arising from the Thomson interaction Hamiltonian, which requires us to utilize an
x-ray energy sufficiently far away from the photoabsorption edges of the core lines for the
system investigated. The Thomson interaction Hamiltonian,HTh, is given by

HTh = 1

2
ro
∑
j

A2(rj , t). (3)

Herero = e2/mc2 is the classical electron radius, andA(rj , t) is the vector potential of the
electromagnetic field atrj , the coordinate of thej th electron. The sum extends over all of the
electrons in the system. The double-differential cross-section is proportional to the number of
incident probe photons which are scattered with an energy and momentum variation within an
energy range1E and a solid angle1�. Considering an event where a photon of energyEi ,
wavevectorki , and polarizationεi is scattered into a final state of energyEf , wavevectorkf ,
and polarizationεf , while the electron system goes from the initial state|I 〉 to the final state
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|F 〉, the double-differential cross-section is

∂2σ(E,�)

∂� ∂E
= r2

o (εi · εf )2
kf

ki

∑
I,F

pI

∣∣∣∣〈I |∑
j

eiQ·rj |F 〉
∣∣∣∣2δ(E − Ei +Ef ) (4)

whereQ = ki − kf is the momentum transfer to the system. The sum over the initial and
final states is the statistical average, andpI corresponds to the population of the initial state.
From this expression, which implicitly contains the dynamic structure factor of the electron
density, one obtains the correlation function of the atomic density on the basis of the following
considerations:

(a) We assume the validity of the adiabatic approximation. This allows us to separate a
quantum state|S〉 of the system into the product of an electronic part,|Se〉, which depends
only parametrically on the nuclear coordinates, and a nuclear part,|SN 〉: |S〉 = |Se〉|SN 〉.
This approximation is particularly good for excitation energies that are small with respect
to the excitations energies of electrons in bound core states: considering the energy of
typical phonon excitations, this is indeed the case in basically any atom. For metals, one
neglects the small portion of the total electron density near the Fermi level.

(b) We limit ourselves to considering the case in which the electronic part of the total wave-
function is not changed by the scattering process, and therefore the difference between
the initial state|I 〉 = |Ie〉|IN 〉 and the final state|F 〉 = |Fe〉|FN 〉 is due only to excitations
associated with atomic density fluctuations.

Using these two hypotheses one obtains

∂2σ(E,�)

∂� ∂E
= r2

o (εi · εf )2
kf

ki

∑
IN ,FN

pIN

∣∣∣∣〈IN |∑
n

fn(Q)e
iQ·Rn |FN 〉

∣∣∣∣2δ(E − Ei +Ef ) (5)

wherefn(Q) is the atomic form factor of the atomn, which is the Fourier transform in space
of the atomic electronic charge density, obtained by carrying out in equation (3) the integration
over the electron coordinates of the electronic ground-state expectation value for this quantity.
Assuming that all of the scattering units in the system are equal, this expression can be further
simplified by factorization of the form factor of these scattering units. By the introduction
of the dynamic structure factorS(Q,E) as defined in equation (1), the double-differential
cross-section for IXS from atomic density fluctuations reduces to the following expression:

∂2σ(E,�)

∂� ∂E
= r2

o (εi · εf )2
kf

ki
|f (Q)|2S(Q,E). (6)

In the limitQ→ 0, the form factor is equal to the number of electrons localized on the scattering
atom,Z. On increasing the value ofQ, the form factor decays rapidly with a decay constant for
each electron of the order of the inverse of its electronic shell dimension. AtQ-values large with
respect to these dimensions, therefore, the inelastic x-ray scattering from density fluctuations
is strongly reduced. The cross-section derived so far is valid for a system composed of a single
atomic species. Equation (5), however, can easily be generalized to molecular or crystalline
systems by substituting for the atomic form factor with either the molecular form factor or the
elementary cell form factor, respectively. The situation becomes more involved if the system
is multi-component and disordered. In this case the factorization of the form factor is still
possible, but only if one assumes some correlated distribution among the different atoms. In
the limit case where the distribution is completely random, an incoherent contribution appears
in the scattering cross-section, exactly as in the case of neutron scattering [25].

We remark that the strength of the coupling of the x-rays to the electrons in the derived
cross-section is determined by the square of the classical electron radius,ro = 2.82×10−13 cm.
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This strength is comparable to that determining the neutron–nucleus scattering cross-section,
ro being comparable tob, the nuclear scattering length [25].

In spite of the strong analogies between inelastic neutron and x-ray scattering, the
development of the x-ray method has so far been limited, mainly for the following reasons:

• Photons with wavelengthλ = 0.1 nm have energies of about 10 keV. Therefore, the
study of phonon excitations in the meV region requires a relative energy resolution
1E/E ≈ 10−7 at least.
• The total absorption cross-section of x-rays of energy 10 keV is limited in almost all

cases (Z > 4) by the photoelectric absorption process and not by the Thomson scattering
process. The photoelectric absorption, whose cross-section is roughly proportional toZ4,
determines, therefore, the actual sample size along the scattering path. Consequently, the
Thomson scattering channel is not very efficient for a system with highZ in spite of the
Z2-dependence of its cross-section (equation (5)).
• The rapid decrease (approximately exponential) of the atomic (molecular) form factor

with increasingQ is responsible for a drastic reduction of the scattering cross-section,
i.e. of the measured intensity, even at relatively small momentum-transfer values.

Despite these important limitations, however, there are situations where the use of x-rays
has important advantages over that of neutrons. One specific case is based on the general
consideration that it is not possible to study acoustic excitations propagating with a speed
of sound,c, using a probe particle with a speedci smaller thanc. This limitation is not
particularly relevant in neutron spectroscopy in studies of crystalline samples. Here, the
translation invariance allows study of the acoustic excitations in high-order Brillouin zones,
and this overcomes the difficulty of the above-mentioned kinematics limit for phonon branches
with steep dispersions. In contrast, the situation is very different for topologically disordered
systems: here, with only a few exceptions, and those for a limitedQ–E region, it has not
been possible to determine the dynamic structure factor using neutrons. For these systems,
in fact, the absence of periodicity imposes the restriction that the acoustic excitations must
be measured at small momentum transfers. As seen in figure 1, in the case of water, this
has prevented the measurement, with good energy resolution, ofS(Q,E) over sufficiently
extended energy and momentum regions. This applies also to many other interesting liquids
and glasses, where the speed of sound is too large for existing neutron spectrometers, and the
interest is in the study of the collective dynamics in the regionQ 6 Qm.

The above arguments explain why, in the study of disordered systems, the inelastic x-ray
scattering technique can be extremely valuable. The x-ray probe, in fact, does not have the
kinematics limitations of neutrons, and can access the region of small momentum transfers
providing that the required energy resolution is experimentally achieved. In fact, because the
energy transfers for the x-ray case are small compared to the incident and scattered photon
energies—Ei ≈ Ef and|ki | ≈ |ki |—a given scattering angle,θs , completely determines the
magnitude of the momentum transfer,Q, independently of the energy transfer,E:

Q

ki
= 2 sin

(
θs

2

)
. (7)

From this relation one sees that, for phonon-like excitations, in inelastic x-ray scattering there
is no limitation on the energy transfer at a given momentum transfer.

The other important advantages of the IXS method are:

(a) The cross-section is highly coherent, contrary to the case for neutrons, where sometimes it
is necessary to separatea posteriorithe coherent,∝S(Q,E), and incoherent,∝Ss(Q,E),
contributions.
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(b) The multiple-scattering processes are in general strongly suppressed by the photoelectric
absorption process, and, taking advantage of the small beam sizes obtained with x-rays,
this allows the direct measurement of the dynamic structure factor without invoking
sophisticated procedures for the reduction of the raw data.

(c) The possibility of having very small beam sizes at the sample position allows the study of
systems available in small quantities and/or their investigation in extreme thermodynamic
conditions, such as under very high pressures and at high or low temperatures.

The above discussion illustrates how the inelastic x-ray scattering technique can be very
useful, and complementary to the INS technique, although it can by no means be viewed as an
alternative to the powerful neutron methodologies. In particular, it shows that the development
of the x-ray method would give access to an extremely important region of theE–Q plane,
and, specifically, to that of smallQ-values, where the acoustic excitations have energies which
are not easy to access using the neutron spectroscopies. An important effort in this direction
has recently been made at the European Synchrotron Radiation Facility (ESRF) in Grenoble.
There, an inelastic x-ray scattering beamline (BL21-ID16) has been recently constructed, and
its performance will be briefly discussed in the remainder of this section.

An x-ray beam with high resolving power can be obtained from a white source using a
Bragg reflection from a perfect crystal, constituting the monochromatization process. The
largest resolving power,(E/1E)h, obtained from the reflectionh of an ideal crystal is an
intrinsic property of the crystal considered.

This quantity is deduced in the framework of the dynamical theory of x-ray diffraction [26].
Here(1E/E)h is proportional to the square of the effective separation between the diffracting
planesdh, and to the form factor atQh = π/dh, and is independent of the Bragg angle
θB . Qualitatively, these results can be understood by recalling that in crystal diffraction the
penetration of the x-ray beam is finite even in the absence of photoelectric absorption, as the
reflectivity of the crystal planes is finite. Therefore the number of planes participating in the
Bragg reflection process is also finite, and(1E/E)h is inversely proportional to their number.
Increased resolving powers are obtained by using reflections of increased order: this is a direct
consequence of (i) the reduction of the form factor (which is the reflection coefficient for the
amplitude of the electric field; see equation (5)) for increasingQ, and of (ii) the proportionality
between(1E/E)h andd2

h. In order to obtain an x-ray beam with high resolving power, it is
therefore necessary to use high-order Bragg reflections, and to have highly perfect crystals [27].

The geometrical conditions, like the energy resolution issues, are also important aspects
if one is to use a high-order Bragg reflection efficiently. From differentiation of the Bragg law,
one obtains a contribution to the relative energy resolution due to the angular divergence1θ

of the beam impinging on the crystal:1E/E = 1θ cot(θB). To reach the intrinsic energy
resolution of the reflection considered, it is necessary to keep

(1E/E)h 6 1θ cot(θB).

In typical Bragg reflection geometry, cot(θB) ≈ 1, and, for high-order reflections with
(1E/E)h ≈ 10−8, the required angular divergence should be in the 10−8 rad range, i.e. should
take values much smaller than the collimation of x-ray beams available even at the new third-
generation synchrotron radiation sources (10−5 rad). This geometrical configuration would
induce a dramatic reduction of the number of photons Bragg reflected from the monochromator,
and lead to analyser crystals within the desired spectral bandwidth. Building on the pioneer
work of Bottom [28] and Maier-Leibnitz [29], an elegant solution to this problem has been
found by introducing extreme backscattering geometry, i.e. the use of Bragg angles very close
to 90◦. This provides very small values of cot(θB) (θB ≈ 89.98◦ gives cot(θB) ≈ 10−4). In
such a way, the range of acceptable values of1θ is increased to include values well above
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10−5 rad, which therefore become even larger than the divergences≈10−5 rad typical for
synchrotron radiation from undulator sources.

The requirements on the energy resolution of the monochromator and of the analyser are
the same. However, the required angular acceptances are very different. The x-ray beam
incident on the monochromator has the angular divergence of the x-ray source, and therefore
one can use a perfect flat crystal. In the case of the analyser crystal, however, the optimal
angular acceptance is dictated by the desired momentum resolution. Considering values of
1Q in the region of 0.5 nm−1, well within the range for exchange momenta (1 to 10 nm−1), the
corresponding angular acceptance of the analyser crystal must be≈10 mrad or higher, which
is again an angular range well above acceptable values, i.e. also larger than the deviation of
the Bragg angle from 90◦. The only way to obtain such large angular acceptances is to use a
focusing system, which, however, has to preserve the crystal perfection, necessary to obtain
the energy resolution. A solution consists in placing a large number of undistorted perfect flat
crystals on a spherical surface, with the aim of using a 1:1 pseudo-Rowland-circle geometry
with aberrations kept sufficiently low that the desired energy resolution is not degraded. This
method has been utilized in the construction of the ESRF spectrometer on BL21-ID16: that
is, approximately 10 000 perfect silicon crystals of surface size 0.7× 0.7 mm2 and thickness
3 mm have been glued on a spherical substrate of radius 6500 mm. This ‘perfect silicon crystal
with a spherical shape’ is the meV energy resolution analyser of the BL21-ID16 beamline.

In figure 3 we show the main optical elements of the ESRF IXS beamline. The instrument,

Figure 3. A schematic diagram of the layout of the inelastic x-ray scattering beamline ID16-
BL21 at ESRF. The different components and their functions are sketched in the figure: (A) pre-
monochromator; (B) main monochromator; (C) toroidal mirror; (D) scattering centre (sample);
(E) analyser crystal; (F) detector.
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a triple-axis spectrometer, has as its first element the monochromator crystal, whose role is to
determine the energy,Ei , of the incident photons. The second element is the scattering sample,
where one selects the scattering angleθs , and therefore the exchange momentum, according
to equation (6). The third element is the analyser crystal, whose role is the determination
of the energyEf of the scattered photons. To maintain the backscattering geometry for any
given energy transfer, a certain energy difference between the analyser and monochromator
is achieved by keeping the Bragg angle constant, and by changing the relative temperature of
the two crystals. This has the effect of varying the relative lattice parameter, and therefore the
values of the reflected energies. Specifically, the analyser is kept at constant temperature while
the monochromator temperature, and thereforeEi , is varied. Considering that1d/d = α 1T ,
with α = 2.56× 10−6 K−1 in silicon at room temperature, in order to obtain an energy step
of about one tenth of the energy resolution, i.e.1E/E ≈ 10−9, it is necessary to control the
monochromator crystal temperature with a precision of about 0.5 mK. This difficult task has
been achieved with a carefully designed temperature bath, controlled with an active feedback
system.

The x-ray source used on the ID16-BL21 beamline is made out of two undulators. The
x-ray radiation utilized is that corresponding to the undulator emission of the third, fifth or
seventh harmonics, chosen to optimize the photon flux at the energies defined by the reflection
order of the monochromator and analyser crystals. These are the Si(hhh) reflections, with
h = 5, 7, 8, 9, 11, 12, 13. The x-ray beam from the undulator odd harmonics has an
angular divergence of approximately 15× 40µrad full width at half-maximum (FWHM), a
spectral bandwidth1E/E ≈ 10−2, and an integrated power within this divergence of the
order of 200 W. This beam is first pre-monochromatized to1E/E ≈ 2 × 10−4 using a
Si(111) double-crystal device kept in vacuum and at the cryogenic temperature of≈120 K
(element A in figure 3). The photons from the pre-monochromator reach the high-energy-
resolution backscattering monochromator (element B in figure 3). This is a flat symmetrically
cut silicon crystal oriented along the (111) direction, temperature controlled with a precision
of 0.2 mK over the 285–295 K temperature region. The Bragg angle at the monochromator is
θB = 89.98◦. The energy resolution of the x-ray beam leaving this monochromator depends
on the reflection considered, and typical values are reported in table 1. The monochromatic
beam impinges on a focusing toroidal mirror (element C in figure 3), which gives at the sample
(element D in figure 3) a beam size of 150(vertical) × 350 (horizontal)µm2 FWHM. The
analyser system (element E in figure 3) is made up of an entrance pinhole, slits in front of
the analyser crystal to set the desired momentum resolution, the analyser spherical crystal
in backscattering geometry (θB = 89.98◦), an exit pinhole in front of the detector, and the
detector itself (element F in figure 3). There are, in fact, five independent analyser systems at

Table 1. Measured fluxes and bandwidths of the x-ray beam leaving the high-energy-resolution
monochromator on ID16-Bl21 at the ESRF at the silicon reflection orders indicated, and with
200 mA in the storage ring.

Reflection Energy (keV) Flux (photon s−1) Resolution (meV)

5 5 5 9.885 2× 1011 15.0
7 7 7 13.840 6× 1010 5.3
8 8 8 15.816 3× 1010 4.4
9 9 9 17.793 6× 109 2.2

11 11 11 21.748 7× 108 1.0
12 12 12 23.725 3× 108 0.7
13 13 13 25.702 1× 108 0.5
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fixed angular offsets in the scattering plane. They are mounted on an arm 7 m long that can
rotate around a vertical axis passing through the scattering sample. This rotation allows one to
determine the scattering angleθs for each of the five analysers, and therefore the corresponding
exchange momentum. The arm operates between 0◦ and 15◦. The spherical analyser crystals
are kept at constant temperature with a precision of 0.2 mK, and operate at the same reflection
of the monochromator in the Rowland-circle geometry with 1:1 magnification. The detectors
are inclined silicon diodes with an equivalent thickness of 2.5 mm.

The performance of each of the five spectrometer channels corresponds to an energy
resolution of 1.5 meV when one utilizes the Si(11 11 11) reflection [30]. At this order,
the angular offset of the five analysers corresponds to an exchange momentum difference of
3 nm−1. The instrumental response function of one of the five channels is reported in figure 4.
This has been obtained by measuring the scattering from a disordered sample of Plexiglas at
aQ-transfer corresponding toQ = Qm = 10 nm−1, and atT = 20 K, in order to maximize
the elastic contribution to the scattering.

Figure 4. The resolution function of the whole instrument obtained using the monochromator and
analyser Si(11 11 11) reflections in backscattering geometry and measuring the elastic scattering
from a plastic sample. The analyser radius is 6.15 m. The energy scans are performed varying the
relative temperature of the two crystals. The count rate is normalized to 100 mA current in the
storage ring. Typical current values at the ESRF are between 100 and 200 mA. The data points
are shown with statistical error bars (often the latter are smaller than the dot size). The solid curve
is a Lorentzian fit to the data, and was used to determine the FWHM of the resolution function.
The measured FWHM energy is 1.5± 0.2 meV, and was obtained with an analyser slit opening
of ≈10× 10 mrad2. In the inset the same data are reported on a logarithmic scale to allow one to
better appreciate the shape of the tail of the resolution function.

The result reported in figure 4 summarizes the best instrumental capability obtained
so far from the ESRF inelastic x-ray scattering spectrometer. From this result, one can
directly appreciate the value of performing IXS experiments with meV energy resolution. The
remainder of this article will be dedicated to the IXS study of the high-frequency dynamics of
liquid water.

4. Inelastic x-ray scattering from liquid water

The aim of clarifying our understanding of the dynamics in liquid water at high frequency,
as summarized in figure 2, constitutes the main motivation of the IXS study that will be
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discussed in the following. Historically, during the development and commissioning phase of
the IXS spectrometer, there were three successive experiments which were performed following
relevant improvements in the energy resolution of the new instrument. They were carried
out in March 1995 with 5 meV energy resolution [31], in June 1995 with 3.5 meV energy
resolution [32], and in February 1996 with 1.5 meV energy resolution [33]. The IXS spectra
measured for liquid water atT = 5 ◦C and saturated vapour pressure are reported in figure 5
as functions of the energy transfer,E, and for different values of the momentum transfer,Q.
The spectra are shown together with the resolution function, obtained as in figure 4. These
functions have been arbitrarily aligned at the central peak (E = 0), and scaled in intensity, in
order to emphasize the presence of an inelastic signal whose shape and intensity changes with
Q. Specifically, we observe that the energy distribution of thisQ-dependent inelastic signal
moves towards higher values with increasingQ.

The data reported in figure 5, as we discussed previously, directly reflect the shape of
S(Q,E) for liquid water in the thermodynamic state considered. In order to describe their
Q- andE-dependencies, one must adopt some model function whose shape can eventually be

Figure 5. Inelastic x-ray scattering spectra of H2O taken at 5◦C at theQ-values indicated. The
experimental data (full circles) are shown with their the error bars. The dashed curves under
the central peaks are the resolution functions (shifted upward to account for the instrumental
background), shown to emphasize theQ-dependent intensity at the sides of the central peak. The
data are normalized to the intensity of the central-peak maximum, and the count rates were≈5,
4.5, 4, 4, 5, 5.5 and 6 counts s−1 atQ = 4, 5, 6, 7, 8, 9 and 10 nm−1 respectively. The integration
time for each data point was 120 s.
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justified by means of a theoreticalansatz. From the fit to the data, one obtains a certain number
of parameters, such as the average excitation energy, the energy width, and the intensity of
the inelastic signal, as well as the intensity and the width of the central peak. Following
the generalized hydrodynamics theory [3], we adopted a model whereS(Q,E) preserves the
basic features of the Brillouin triplet observed in the hydrodynamic limit: namely, a spectrum
made up of a central peak and two—Stokes and anti-Stokes—inelastic features. The central
peak, as in the Brillouin triplet, is modelled by a Lorentzian function, while the side peaks are
represented by a damped harmonic oscillator (DHO) function [34]. The choice of the DHO
function is motivated by various arguments: the first one is related to the fact that one can
derive this lineshape using a Markovianansatzfor the memory function, i.e. one assumes that
the timescale of the density fluctuations considered, and thus the reaction of the surrounding
medium, is much faster than the relaxation time associated with any relaxation process active
in the system. This corresponds to a model of the memory function entering in the generalized
Langevin equation made up of a constant and aδ(t) function [3]. A second point is simply
related to the fact that this model is routinely utilized in the analysis of neutron data and MD
simulation spectra of disordered systems, and therefore its use allows a direct comparison with
the existing work on liquid water. One should keep in mind, nevertheless, that this lineshape
is just a model function which has been arbitrarily chosen; its main uses are to show the basic
features expected for the inelastic part ofS(Q,E) for a disordered system in theQ-range
considered, and to allow one to summarize these features and theirQ- andT -dependencies
using a minimal number of spectroscopic parameters, and independently of specific theories.
Qualitatively similar results are obtained using other model functions for the inelastic signal,
such as Lorentzians and Gaussians. The model functionF(Q,E) utilized is given below:

F(Q,E) = FC(Q,E) + FDHO(Q,E)

= 1

π
Ic(Q)

0c(Q)

E2 + 0c(Q)2
+
E[n(E) + 1]

kBT

1

π
I (Q)

0(Q)2�(Q)

(�(Q)2 − E2)2 + 0(Q)2E2
.

(8)

Figure 6. The excitation energy parameter,�(Q), as obtained from the fit to the data of figure 4
(crossed circles) is reported as a function ofQ and compared with the similar quantity measured
by means of INS by Teixeiraet al [11] (full circles). The dashed line indicates the best linear
fit up to 10 nm−1 of the IXS-derived�(Q), and its slope corresponds to a speed of sound of
3200± 100 m s−1.
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In this expression,Ic(Q) andI (Q) are the intensities of the central and inelastic contributions,
�(Q),0(Q), and0c(Q) refer to the excitation energy and to the energy widths of the side and
central lines,n(ω) is the Bose factor, andkB is the Boltzmann constant. Analytically,�(Q)
corresponds to the maximum of the current spectrum, i.e. to the maximum of the function
E2/Q2FDHO(Q,E). The experimental spectra have been fitted to the convolution ofF(Q,E)

with the instrument resolution function using standardχ2-minimization routines. The values
of�(Q) are reported in figure 6 together with the corresponding quantities derived by Teixeira
et al from their neutron data. We observe a linear dispersion withc = 3200± 100 m s−1, and
a very good overlap between the x-ray and neutron data, in spite of the fact that the neutron
data were taken for D2O and the x-ray ones for H2O.

These x-ray measurements, when compared with the neutron data of Teixeiraet al, allow
one to clarify the following points:

(a) Over a largeQ-region there is an excitation in liquid water that propagates with a velocity
of sound more than double the ordinary sound velocity. The x-ray work has allowed this
region to be enlarged from 3.6–6 nm−1 to 4–10 nm−1.

(b) The energy of these excitations at a givenQ is, within the error bar, equivalent for D2O and
H2O, without an isotopic shift that can be related directly to the mass difference between

Figure 7. The IXS spectra of water atT = 5 ◦C (open circles) shown together with the total fits
and the elastic components at theQ-values indicated. The data are normalized to their maximum
intensities, corresponding to 2.8 and 2.4 counts s−1 (total counts 1100 and 500) atQ = 4 and
10 nm−1 respectively. The insets emphasize the weakly dispersing features at≈4–5 meV; here the
experimental data are shown together with the total fit and the three individual components (elastic
peak, and high- and low-energy inelastic contributions).
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H and D. The x-ray studies on both D2O and H2O show in fact that there is a reduction
of the excitation energies in D2O with respect to those in H2O consistent with the factor√

18/20≈ 0.95 expected from thetotal mass difference between the two molecules. It
is then possible to conclude that this excitation involves the centre of mass of the whole
molecule, and it is not limited predominantly to the motion of the lighter hydrogen atoms.

Figure 8. Excitation energies,�(Q) obtained using the DHO model, from the IXS experiments.
The crossed circles refer to the dispersing excitation and the crossed diamonds to the weakly
dispersing ones. The dashed line, with a slope of 3200 m s−1, results from a fit of the IXS�(Q)
forQ > 4 nm−1. The dotted line is the dispersion relation expected for the continuation to highQ

of the hydrodynamic sound modes (≈1500 m s−1). The open and full symbols are the data already
reported in figure 2.

The IXS data reported in figure 5 are dominated by the elastic peak and by the fast-sound
modes. The presence of a feature atE ≈ 5 meV, like those reported in references [10,24], is
not clear. In order to assess whether one can use IXS to observe this second excitation, the IXS
spectra have been measured with increased statistical accuracy at selectedQ-values. These
spectra are reported in figure 7, and, beside the inelastic scattered intensity dispersing withQ,
it is now possible to observe a new weakly dispersing feature with 4–6 meV energy transfer.
This is emphasized in the insets of figure 7. This feature is observed only in the spectra with
Q larger than 4 nm−1, and is no longer detected in the spectra at smallQ. Like the data in
figure 5, the data atQ > 4 nm−1 were fitted by a Lorentzian for the central peak, and a DHO
model for each of the two (dispersing and weakly dispersing) features. The energies of the
excitations, determined from the fit and corresponding to the DHO fitting parameter�(Q),
are reported in figure 8 together with the simulation and neutron results already reported in
figure 2. The different measurements of the dispersing excitations are consistent over the
commonQ-range. Therefore, the IXS measurements confirm the existence of two modes
in the high-frequency dynamics of liquid water atQ-values larger than 4 nm−1. However, a
careful study ofS(Q,E) atQ-values smaller than 4 nm−1 shows only one excitation dispersing
withQ. This is apparent from the IXS data of figure 9, where it is no longer possible to observe
an excitation in the 4–5 meV energy region. Most importantly, the DHO analysis of these data
shows us that, in this small-Q region, there is a dispersion of the apparent velocity of sound,
c(Q) = �(Q)/Q; in fact, the value of 3200 m s−1 atQ = 4 nm−1 decreases to 2000 m s−1 at
Q = 1 nm−1. Summarizing, the IXS work and its DHO analysis, beside confirming previous
studies as regards the existence of two excitations at largeQ, shows that below a certain
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Figure 9. The IXS spectra of water atT = 5 ◦C (full circles) shown together with the total fits and
the individual components at theQ-values indicated. The data are normalized to their maximum
intensities, corresponding to 1.4, 1.2, 1.1, 1.0 counts s−1 and total counts of 450, 360, 360, 350 at
Q = 1.0, 1.5, 2.0, 2.5 nm−1 respectively.

Q-value only one excitation survives, and the sound velocity associated with these collective
excitations progressively changes from ‘fast’ to ordinary values with decreasingQ-value. This
experimental result, consistently with the previous finding that the ‘fast’-sound mode is due
to the dynamics of the centre of mass of the water molecule, implies that the ‘fast’ sound is
the continuation to highQ of the acoustic branch mode. TheQ-dependence of the apparent
sound velocity is reported in figure 10.

It is important to stress that only atQ-values where the speed of sound has reached the
‘fast’-sound value does one observe two modes in the spectra simultaneously. Therefore, in
spite of having ascertained the existence of two modes and the dispersion of the sound velocity
from the ‘fast’ value toward the ordinary value, very relevant questions still await clarification.
Specifically: what is the mechanism leading to the transition between the two dynamical
regimes in liquid water? What are the properties differentiating the high-frequency dynamical
regimes from the low-frequency one, typical of ordinary hydrodynamics? What is the nature
of the weakly dispersing excitation observed only at highQ-values?

5. High-frequency dynamics in solid and liquid water

The peculiarity of the large increase of the sound velocity in liquid water at high-frequency
poses very basic questions regarding the nature and origin of this phenomenon. In particular,
this value is comparable to the speed of sound in solid water in its most familiar crystalline
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Figure 10. Excitation energies,�(Q) (crossed circles), in the low-Q region, where the transition
from fast towards normal sound takes place, as emphasized by the two lines corresponding to the
fast- and normal-sound branches.

phase: ice Ih. One may then speculate that, in a certaintime–spacedomain, the density
fluctuations in the liquid not only deviate from their macroscopic behaviour, but also start to
become similar to those of the solid. This possibility can be explained by considering that the
liquid and solid states are thermodynamical concepts related to the time evolution of the relative
positions of the atoms in the condensed material considered. While in the solid there are no
changes on a long timescale, the liquid undergoes characteristic structural rearrangements.
These two concepts lie at the origin of many of the macroscopic properties of materials. In
the microscopic limit, however, dominated by local bonding and interatomic interactions, the
concepts of liquid and solid states may tend to cease to apply, and this may be one of the basic
reasons for the increased sound velocity in liquid water at times in thepicosecond range and
below.

Measurements of the dynamical structure factor of water in the liquid and solid states,
at temperatures just above and just below the melting transition, can help one, in principle,
to investigate the similarities of and the differences between the high-frequency collective
dynamics of the two phases. Using the IXS method, in the present case with a total energy
resolution of 3 meV, a set of measurements were performed on a solid sample kept at−20 ◦C.
The measurements were made on different solid samples of ice Ih: polycrystals—in order to
obtain an orientational averaging and thus to allow a more significant comparison with the
liquid—and single crystals, along different crystallographic directions.

Inelastic x-ray scattering spectra at selectedQ-values, and the corresponding fits, are
shown in figure 11 for polycrystalline ice. No significant differences are found in the single-
crystal spectra along the crystallographic directions investigated, (101̄1) and (0001). This
isotropy is a consequence of the almost perfect tetrahedral coordination among the H2O
molecules. At lowQ, the spectra are dominated by the longitudinal acoustic (L) phonon
branch, whose energy increases withQ. The presence of a small central peak can be attributed
to residual static disorder in the crystal, and to some scattering from the air and from the
windows of the sample cell. The boundary of the first Brillouin zone (BZ) in ice is at≈7.5 nm−1,
and below thisQ-transfer value one can detect only those modes that have eigenvectors which
have a finite longitudinal component. This is a consequence of the selection rule governing
x-ray and neutron scattering from phonons: in order to have a finite intensity, the projection
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Figure 11. The IXS spectra of polycrystalline H2O ice Ih at−20◦C, taken at theQ-values indicated
with 3.2 meV and 0.4 nm−1 energy and momentum resolutions, are reported together with their
fits. The longitudinal and transverse phonons are labelled L and T respectively. The experimental
data are normalized to the maximum of the L Stokes peak. At this point, the count rates were
≈1 count s−1 at all of theQ-values investigated. The integration time for each data point was 180 s
atQ = 2 and 6 nm−1 and 90 s atQ = 10 and 12 nm−1. The data (open circles), shown with their
error bars, are superimposed on the fits (solid curves). The fits were achieved by the convolution
of the experimental resolution function with two pairs of Lorentzians, representing the L and T
Stokes and anti-Stokes peaks. A fifth Lorentzian was used to account for the small elastic intensity
probably due to residual disorder in the polycrystal.

of the phonon eigenvector along the totalQ-transfer direction must be finite. Consequently,
a purely transverse mode can only be detected in a BZ if it has order higher than one. Such
behaviour is observed for the excitation found in figure 11 at≈7 meV, which shows very little
dispersion, and appears atQ-values larger than 7 nm−1. In agreement with lattice dynamics
calculations, this feature corresponds, in fact, to the transverse phonon branch (T), and, in
the second BZ, it corresponds to what is referred to as the optical transverse phonon in the
reduced-BZ representation scheme. The solid curves were obtained by fitting the spectra by the
convolution of the experimental resolution function with two pairs of Lorentzians, representing
the LA,AS and TA,AS Stokes and anti-Stokes peaks, and with a fifth Lorentzian to account for
the elastic peak. The intensities have been normalized to the maximum of the LA,AS Stokes
peak.

In figure 12 we report the dispersion relations for liquid and solid water as obtained from
the data of figure 11 and from the IXS data already shown in figure 8. The reported energies
correspond to the maxima of the longitudinal current spectra. For the crystal, this is the
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maximum of the Lorentzian representing the LA,AS phonon. For the liquid, it is the�(Q)
parameter of the damped harmonic oscillator model as defined in equation (7). The data for
ice Ih are consistent with previous neutron measurements for D2O performed for higher-order
Brillouin zones [35].

Figure 12. Excitation energies,�(Q), for the L (crosses) and the T (stars) excitations in poly-
crystalline ice Ih. The other symbols and the dashed and dotted lines have the same meaning as for
figure 8.

The dispersion relations of the two modes reported in figure 12 show that there is a
striking similarity between the longitudinal dynamics of liquid and solid water. These collective
properties are, in fact, identical within their respective error bars. This result demonstrates
that, atQ > 4 nm−1, the collective dynamics of liquid water is equivalent to that of solid
ice. This observation has at least two very important consequences. The first one is that, in
the high-frequency domain considered, the density fluctuations in the liquid propagate in a
‘rigid’ structure imposed by the tetrahedral coordination among the water molecules, as in
the solid. A second one is that, in analogy with the solid, in the liquid state there is also
a transverse dynamics which shows up atQ-values higher than the one that characterizes
the transition from the liquid-like to the solid-like dynamical regimes: the transition from
ordinary to ‘fast’ sound. Contrary to the case for the crystalline phase, however, where
the translational invariance allows a pure transverse dynamics, in the liquid, the absence
of translational symmetry imposes the restriction that a mode cannot be purely transverse
or longitudinal. This may explain why the weakly dispersing mode in liquid water, although
reminiscent of the transverse phonon in the solid, always has a longitudinal component. Thanks
to this longitudinal symmetry, one can observe this transverse-like mode inS(Q,E) for the
liquid when performing scattering experiments atQ-values significantly smaller than in the
case of the crystalline phase.

The indication of such strong similarities between the high-frequency dynamics of liquid
and solid water, and, in particular, the interpretation of the weakly dispersing feature in the
liquid as the manifestation of a transverse-like dynamics in a liquid system are certainly
interesting and somewhat intriguing results. In fact, the need for a deeper investigation, and,
eventually, also for an explanation of these findings based on more solid theoretical grounds
are very evident—especially considering that the transition to a solid-like dynamics in a liquid
at high frequencies, if confirmed, could be a very general property of the liquid state.
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6. Longitudinal and transverse dynamics in liquid water

The discussion in the previous section indicates that the dynamics in liquid water is
characterized by two branches, one strongly and the other weakly dispersing withQ. The
first one has been identified as the sound branch with an upwards bend in the region below
Q = 4 nm−1. The second one, on the basis of INS and IXS results on ice crystals [33,35,36],
has been related to a localized motion reminiscent of the transverse dynamics in the crystal.
Similarly, from the analysis of MD simulations, this mode has been associated with the bending
motion of three hydrogen-bonded water molecules. There are two important points still to be
settled, however: (i) the physical mechanism(s) responsible for the bending of the sound branch
and for the observation of a second mode atQ larger than 4 nm−1, and (ii) whether the behaviour
of liquid water is common to a large class of liquids or is specific to this system. In this respect,
one can hope to find some hints as regards these issues by studying the symmetry character,
and itsQ-dependence, of the modes observed in liquid water. This can be accomplished using
the results of a numerical MD simulation of liquid water.

This point of view has motivated a recent large-scale MD simulation [37], whereN = 4000
‘D2O’ SPC/E [38] molecules enclosed in a cubic box with periodic boundary conditions were
considered [39]. The molar volume was 18 cm3 and the temperature was≈250 K, i.e. the
temperature of maximum density for the SPC/E potential model [40]. In this calculation,
the electrostatic long-range interactions were taken into account using the tapered reaction-
field method, and the integration of the rotational equations of motion was carried out using
an improved version of the Verlet algorithm [41]. The molecular trajectories, after achieving
thermal equilibrium, were followed for≈100 ps and stored every 10 fs, i.e. every five integration
time steps. From the stored configurations, the instantaneousQ-components of the density
fluctuations of the centre of mass [42],ρQ(t) (see equation (2)), were evaluated. The dynamic
structure factor was then calculated from the power spectrum ofρQ(t), i.e.

S(Q, E) = |FT {ρQ(t)}|2. (9)

To reduce the noise inS(Q, E), both a Hanning window and the Welsh method were
utilized [44]. The time window was1t ≈ 20 ps, giving rise to an energy resolution of
0.04 meV.S(Q, E) has been averaged over independent directions ofQ = (2π/L)(h, k, l)
(whereL = 4.93 nm is the box length) at severalQ-values in the 1.3 to 35 nm−1 range.

The MD data have been directly compared to the IXS data. The match between the
calculated functionS(Q,E), convoluted with the experimental resolution function, and the
inelastic x-ray scattering data measured at 4◦C is very good for all of theQ-values investigated
in the IXS experiment. As an example, in figure 13, we report the comparison at the selected
Q-value of 4 nm−1. The agreement between the calculated and measured spectra implies
that the potential model used in the simulation is capable of representing the dynamics of
real water at normal density successfully. Consequently, it is reasonable to expect that the
transverse dynamics, a quantity which is not accessible to experiments, can also be reliably
determined from the present MD data. The transverse and longitudinal current spectra have
been calculated from the molecular trajectories as

CL(Q,E) = E2S(Q,E)/Q2 (10)

and

CT (Q, E) = |FT {jTQ(t)}|2 (11)

wherejTQ(t) is defined as

jTQ(t) =
1√
N

∑
j

(Q̂× (Q̂× vj (t))) exp(iQ ·Rj (t)). (12)
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Figure 13. Comparison between the IXS data and the MD results atT = 5 ◦C andQ = 4 nm−1.
The IXS data (open circles) are reported with their error bars after subtraction of the instrumental
background. The MD-calculated functionS(Q,E) (dashed curve) has been convoluted with the
experimental resolution function, and the result (full curve) has been multiplied by an arbitrary scale
factor in order to adjust the peak height to match the experimental data. The IXS and convoluted
MD results are also reported in the inset, on a logarithmic scale, in order to show their good
agreement in the tails of the spectrum also.

In figure 14 are reported examples of longitudinal (figure 14(a)) and transverse (fig-
ure 14(b)) current spectra at selectedQ-values. Both of the current spectra,CL(Q,E) and
CT (Q,E), show the existence of two excitations. The high-frequency excitation disperses
with Q, and its sound velocity changes from≈2000 m s−1 to≈3300 m s−1. This excitation
appears at eachQ-value in the longitudinal current spectra, while it is found in the transverse
current spectra only atQ > 4 nm−1. We assign this feature to a quasi-longitudinal sound
branch and we call it the L mode in view of its longitudinal character in theQ → 0 limit.
The behaviour of the low-frequency excitation is in some sense opposite: it is always present
in the transverse current spectra, while it appears in the longitudinal current spectra only at
Q > 4 nm−1. This low-frequency feature is from now on referred to as the T mode. At small
Q, the T mode disperses with a sound velocity of≈1500 m s−1, and stays at an almost constant
energy forQ > 7 nm−1.

The calculated spectra have been fitted with the same simple models as were used to fit
the IXS data, and this allows us to summarize the excitations in terms of their energy (�η(Q),
η = {L, T}; i.e. the position of the current spectra maxima), their energy width (0η(Q)),
and their integrated intensity (Iη(Q)). Beside the DHO model, a more refined viscoelastic
model has also been utilized [3], and values of the fitting parameters have been found which
are consistent within their uncertainties. The best fits are superimposed on the MD data in
figures 14(a), 14(b).

The values of the excitation energies,�L(Q) and�T (Q), are reported in figure 15.
Figure 15(a) shows the completeQ-region investigated. The dispersion relation of the L modes
follows the universal behaviour of liquid systems, i.e., a minimum appears at about theQ-value
whereS(Q) attains its maximum. A similar minimum, although less pronounced, is found in
the branch of the T modes. The figures 15(b), 15(c) give an expanded view of the dispersion
in the small-momentum-transfer region. In figure 15(c) the change in slope of the L branch
marks the transition betweenco andc∞.

The MD results, comparing extremely well with the available INS and IXS data for
liquid water reported in the previous sections, allow one to give emphasis to the point that, at
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Figure 14. The longitudinal (a) and transverse (b) current spectra calculated from the MD
simulation [37] are reported with their error bars at theQ-values indicated. The full curves are
the best fits to the spectra. The dashed (dotted) curves show the individual contributions to the fit
coming from the L mode (T mode).

energies below≈30 meV, in the liquid, as in ice crystals, there are two phonon modes. As
for the crystal, these are a longitudinal-like and a transverse-like phonon branch. Therefore,
the MD results not only confirm that atQ larger than 4 nm−1 the longitudinal dynamics of
liquid water becomes very similar to that of the crystalline solid, but also demonstrate that
the second mode at≈5–6 meV is due to a transverse-like dynamics. There is, however, an
important difference between liquid and solid as regards the symmetry character of the two
branches. In the solid, a dominant longitudinal or transverse character is preserved throughout
theQ-region considered. In the liquid, the MD calculations show that, as a consequence of
the lack of translational invariance, the pure symmetry character of the two modes is rapidly
lost at largeQ-values. Here, both modes contribute to similar extents to both the longitudinal,
CL(Q,E), and the transverse,CT (Q,E), current spectra.

The MD results obtained at lowQ, i.e. below 2 nm−1, are consistent with the behaviour
expected in a typical liquid system in theQ → 0 limit, where only one mode is expected
to survive in each current spectrum. InCL(Q,E), the L mode propagates with a velocity of
sound approaching the hydrodynamic value measured in the macroscopic time- and length-
scale limits. InCT (Q,E), the T mode loses its propagating character observed in the 2–4 nm−1

region, and one could infer that the transverse dynamics becomes progressively relaxational-
like from the pile-up of spectral intensity towards zero frequency. The transition of the L mode
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Figure 15. The energy positions of the L (full symbols) and T modes (open symbols) in three
differentQ-regions: (a)Q = 0–5 nm−1; (b)Q = 0–10 nm−1; (c)Q = 0–40 nm−1. The circles
(squares) represent the�η(Q) parameter obtained fromCL(Q,ω) (CT (Q,ω)). The slopes of the
lines in (c) correspond to the longitudinalvo andv∞ obtained using the present potential model.

to a pure longitudinal symmetry propagating with theco-value of the velocity of sound, and
the disappearance of the T mode, bring the collective dynamics of liquid water back to the
behaviour expected for a simple liquid in the macroscopic limit.

The transition from the low-frequency and low-Q hydrodynamic behaviour, where the
density fluctuations propagate in a time- and space-averaged continuum medium, to the high-
frequency solid-like regime, where the elastic response of the medium is dictated by the
(disordered) instantaneous molecular arrangements, has already been observed in many glass-
forming liquids [45]. This transition takes place at aQ-value where the frequency of the
sound waveω equals the inverse of the structural relaxation timeτ . Manifestations of this
transition include: (i) the increase of the longitudinal sound velocity from the lowQ-valueco
towards its highQ-valuec∞; and (ii) the appearance of a propagating transverse dynamics.
The conditionωτ = 1 is typically fulfilled at frequencies below 1010 Hz, depending on the
temperature difference from the glass transition temperature of the system investigated. This
behaviour is very similar to the one found here for liquid water. This is best summarized
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in theQ-dependence of the parameters reported in figures 15, which can be scaled to the
typical evolution of the sound velocity in a glass-forming liquid undergoing anα-relaxation
process [45]. In contrast to the case for other known glass-forming systems, however, in water
this transition would take place at much higher frequencies,≈2.5× 1011 Hz, i.e.τ ≈ 0.6 ps.
Finally, the wavelength marking the transition,λτ = 2πcoτ ≈ 3 nm, is comparable to the
structural correlation length derived fromS(Q) measurements by Bosioet al [46]. A study
of S(Q,E) as a function of temperature could show whether the high-frequency dynamics of
liquid water can be described within the same framework as was utilized for glass-forming
systems. This can be understood by considering that the temperature change induces a steep
modification of the parameterτ characterizing the structuralα-relaxation, and therefore the
frequency at which the transition fromco to c∞ would take place. In the next section, we will
see that this is indeed the case, and that the transition can be associated with the structural
relaxation due to the making and breaking of the hydrogen bonds.

7. Temperature dependence of the high-frequency dynamics in liquid water

In glass-forming liquids the transition between the viscous regime at low frequency and
the elastic one at high frequency is determined by the coupling of the propagating density
fluctuations with the dynamics of the structural rearrangements of the particles in the liquid.
Such a complex dynamics, taking place at the atomic scale, and giving rise to the local
rearrangements, can be described by a relaxation process with a characteristic timeτ . For
glass-forming liquids,τ has a strong temperature dependence; close to the melting point typical
values ofτ are in thenanosecond range; it dramatically increases on lowering the temperature,
and near the calorimetric glass transition temperatureTg it reaches values as high as hundreds
of seconds [47]. As was mentioned in the previous section, this structural relaxation process
has a cooperative nature, and the density fluctuations are differently influenced in the two
opposite frequency limits: the system has a solid-like elastic behaviour forωτ � 1, and
a viscous one forωτ � 1. Along these lines, one could speculate that for liquid water the
physical mechanism responsible for the dispersion of the sound velocity is also anα-relaxation
process. However, a few important differences exist between water and the majority of the
systems belonging to the class of glass formers. Indeed, unlike the case for the latter systems,
for water the existence of a liquid-to-glass transition, predicted to occur in the 130–140 K
region, has not yet been firmly established. The situation is in fact even more involved, as
extrapolation from results of experiments carried out atT > 245 K and molecular dynamics
simulations seem to indicate the presence of a relaxation time that diverges atT ≈ 230 K [6].
A further quantitative difference is found in the characteristic time, which in water is in the
picosecond range at the liquid-to-crystal transition, i.e. much smaller than those for glass
formers at their melting temperatures.

The experimental characterization of theα-process is typically obtained by the
determination of the dispersion of the sound velocity as a function ofT and at a constant
Q-transfer value. At the inflection point (t) of such an ‘S’-shaped curve, the condition
�t(Q, T )τ(T ) ≈ 1, with �(Q, T ) = capp(Q, T )Q, is fulfilled. In glass-forming liquids,
this condition is met by Brillouin light scattering (BLS) measurements close to melting, and
by ultrasonic (US) methods close toTg. Indeed, the typical frequencies allowed by these two
techniques are such that�t(Q, T )τ(T ) ≈ 1.

In the case of water, as a consequence of the small value ofτ close to the crystal melting
temperature, BLS cannot access the relevant excitation energy region, although, in the highly
supercooled liquid, it was possible to detect by means of BLS a deviation ofco towards a
higher value, i.e. towardsc∞ [22, 23]. The complete determination of the ‘S’-shaped curve
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as a function of eitherT or Q requires, however, the use of IXS. Using the IXS technique,
therefore, one can determine the inflection point in thec–Q curve, and, consequently, the
relaxation timeτ .

These observations motivated an IXS study on the temperature dependence of the trans-
ition from normal to fast sound in liquid water. The temperature- and momentum-transfer
ranges considered were, respectively, theT = 260–570 K andQ = 1–12 nm−1 regions [48].
In order to emphasize the thermal effects, and to minimize the modification of the hydrogen-
bond dynamics due to large variations of the excluded volume, in this experiment the density
was kept as constant as possible within the experimental capabilities by adjusting the pressure
in the 0–2 kbar range. The IXS spectra were measured at different(Q, T , P ) points. The
Q-dependence was studied in the 1–12 nm−1 region at temperatures of 278, 373, and 493 K.
TheT -dependence was studied at theQ-values of 2, 4, and 7 nm−1 in the 260–570 K region.
The pressure, selected according to the equation of state (EOS) [49], was varied to maintain the
density,ρ ≈ 1.00 g cm−3. The points atT < 270 K were taken atP = 2 kbar, corresponding
to ρ ≈ 1.02–1.07 g cm−3, while for those measured atT > 410 K, also taken atP = 2 kbar,
the density was in the rangeρ ≈ 1.00–0.96 g cm−3.

An example of the evolution observed in the IXS spectra as a function of temperature is
reported in figure 16 forQ = 2 and 4 nm−1 and three selected temperatures together with their
fits, performed as for the water spectra discussed in the fourth and fifth sections. The energy
dispersion of the inelastic signal withQ is reported in figure 17 at the selected temperatures of
278, 373, and 493 K. One observes that the deviation of the dispersion curve from the straight
line, whose slope corresponds toco as obtained from the EOS, takes place at increasingQ-
values with increasing temperatures. In figure 17 this has been emphasized by plotting the
three dispersion curves on top of each other. In this figure, the values of�(Q, T ) have been
scaled by the ratioco(278 K)/co(T ), whereco is the adiabatic sound velocity obtained from
the equation of state (EOS) [49], and the full line represents the adiabatic sound dispersion
�(Q) = co(278 K)Q. The scaling of the excitation energy to the adiabatic sound velocity at
T = 278 K allows us to emphasize that the transition of the apparent sound velocity�(Q)/Q

from the adiabaticco-value to the high-frequency limit,c∞, takes place at aQ-value which
is strongly temperature dependent. In the dispersion atT = 278 K, the deviation fromco
can already be observed at≈1 nm−1, while, atT = 373 K andT = 493 K, this deviation is
observed atQ-values larger than 3 and 6 nm−1 respectively.

The behaviour summarized in figures 16 and 17 provides experimental evidence that the
mechanism underlying the observed transition has a dynamical origin, and, in fact, is likely
to be due to a relaxation process. The temperature dependence of its characteristic relaxation
time, τ , is then the cause of the strong temperature dependence of theQ-value,Qt , at which
the transition is observed.

A quantitative determination of bothQt andτ can be made by introducing the apparent
longitudinal elastic modulus:M = ρWc2(Q, T ) (hereρW is the mass density). In the simple
Debye approximation for the relaxation process, the frequency dependence ofM, leading to the
dispersion from its low-frequency valueMo = ρWc2

o to its high-frequency oneM∞ = ρWc2
∞,

is given by [50]

M = M∞ +
Mo −M∞

1 + iωτ
. (13)

Introducing thereducedapparent modulusMr :

Mr = M −Mo

M∞ −Mo

(14)

the values ofτ can be determined from the condition Re(Mr) = 0.5. The calculation of
Mr(Q, T ) from the measured apparent sound velocity requires the knowledge ofco andc∞.
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Figure 16. Examples of IXS spectra of liquid water at theQ- and T -values indicated (open
circles) shown together with the total fits and the individual components. The spectra at
T = 266 (314, 413) K were taken atP = 2 (0.3, 2) kbar, corresponding to the densities
ρ = 1.02 (1.00, 0.98) g cm−3.

Forco(T ), we used the values from the EOS [49] and we assumed them to beQ-independent;
this hypothesis is justified by the small variation of the static structure factor in theQ-range
considered [9, 51]. We also assumed aT - andQ-independent value ofc∞ = 3200 m s−1

(derived from the IXS measurements atT = 278 K [33]). In derivingMr(Q, T ), one
must also consider thatc(Q, T ) could depend on the model utilized forS(Q,E). Within
these approximations, we obtained, from the data reported in figures 16 and 17, theMr -
values shown in figure 18. This allows us to determine the momentum-transfer valueQt

from the conditionMr = 0.5 at the temperature considered. The values forτ(T ) are then
derived asτ(T ) = �(Qt, T )

−1, where�(Qt, T ) is obtained by interpolating�(Q, T )
reported in figure 17. Similarly, from the sets of measurements performed atQ = 2, 4,
and 7 nm−1 as functions of temperature, we obtained the values of�(Q, T ) which lead to
the values ofMr(Q, T ) reported in figure 19. Here, from the conditionMr(Q, T ) = 0.5, we
obtained the temperatureTt , where the selected momentum transfer becomesQt . Therefore
τ(T ) = �(Q, Tt )−1, where�(Q, Tt ) is obtained by interpolating�(Q, T ).

The values ofτ(T ,Q) derived from figures 18 and 19 are reported in figure 20. This
quantity changes from 1.3 ps at 280 K to 0.2 ps at 490 K. In spite of the fact that the present
measurements were performed at constant density, the derivedτ -values are consistent with



R288 G Ruocco and F Sette

Figure 17. The dispersion relation of the�(Q) parameter as a function ofQ atT = 278 K (full
diamonds), 373 K (full circles), and 493 K (full squares). The excitation values have been scaled
by the factorco(278 K)/co(T ), with values ofco(T ) obtained from the EOS [49]. This has been
done to emphasize, in the same plot, the departure of the dispersion relation from theco(T )Q law,
shown by the solid line, which is valid in theQ→ 0 limit. This departure takes place at increasing
Q-values with increasing temperatures.

Figure 18. TheQ-dependence of the reduced apparent modulus,Mr , at the temperatures indicated
(the key to the symbols is as for figure 17). TheQ-values at which the transition take place,Qt ,
have been determined from the conditionMr = 0.5. This has been found by means of linear fits
to the data, shown (full lines) together with their±1 σ prediction bands (dotted curves).

other determinations performed along the coexistence curve. This is shown in figure 20,
where we also report theτ -values obtained from the linewidths of the depolarized Raman
scattering [52, 53]. These values are also comparable to those obtained from ultrasound
absorption and viscosity measurements [54], Brillouin light scattering data [22, 23], and
molecular dynamics simulations [19]. In the temperature- and momentum-transfer region
considered, we also observe thatτ does not have a markedQ-dependence, and, when fitted
to an Arrhenius behaviour, gives an activation energy1E = 2.5 ± 0.5 kcal mol−1. This
value is consistent with the other determinations along the coexistence curve, where a relevant
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Figure 19. The T -dependence of the reduced apparent modulus,Mr , at Q = 2 nm−1 (full
diamonds), 4 nm−1 (full circles), and 7 nm−1 (full squares). The values of the transition
temperature,Tt , have been determined in the same way as theQt -values in figure 18.

Figure 20. The relaxation timeτ as obtained from the analysis of the apparent reduced moduli
reported in figures 18 (crossed diamonds) and 19 (full diamonds) are shown together with those
derived from depolarized Raman scattering in references [52] (open circles) and [53] (open squares).

deviation from the Arrhenius behaviour is observed only at temperatures below 280 K.
Summarizing the work reported in this section, the study of the temperature dependence

of S(Q,E) for liquid water has shown that the transition between the low-frequency adiabatic
sound velocity towards its high-frequency limit takes place at aQt -value which is strongly
temperature dependent. This demonstrates that such a transition is due to a relaxation
process. Moreover, the phenomenology found in the temperature andQ-dependencies of the
excitation energies of the longitudinal sound mode strongly resembles that observed for glass-
forming liquids undergoing theα-relaxation process, although on a much faster timescale.
Consequently, this similarity leads us to suppose that in water, the relaxation process leading
to the transition considered is also due to a rearrangement of the local molecular structure.
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8. Conclusions

The study of the high-frequency dynamics in liquid water, reviewed in this article, is beginning
to provide a satisfactory picture of the characteristic excitations of this system in the region
corresponding to the molecular motion at the interparticle distance level. Most important, from
the previous discussion one also starts to have a reasonable picture of the physical mechanisms
affecting the momentum and temperature dependences of these excitations. A very large body
of theoretical, numerical simulation, and experimental work has been dedicated to the study of
the collective dynamical properties of liquid water during the last twenty years or more. In the
present article, we have reviewed the main results of this earlier work, and we have tried to put
them into perspective with the new experimental determinations of the dynamic structure factor
of liquid water obtained thanks to the development of the inelastic x-ray scattering method
with meV energy resolution.

The use of the IXS technique, more specifically, has allowed a few important points on
the collective dynamic of water to be clarified. In particular, we have seen that:

• The fast-sound excitation branch is clearly observed by means of IXS, confirming the
earlier neutron work of Teixeiraet al [11]. Using the sensitivity of IXS to the oxygen
atom, and therefore the fact that the IXS signal is completely dominated by the O–O
correlation function, the IXS results have established that the fast sound is a property of
the centre of mass of the whole water molecule, and not some exotic excitation involving
mainly the motion of the lighter hydrogen atoms.
• The simultaneous existence of two modes, as predicted from the molecular dynamics

calculations, has been demonstrated forQ larger than 4 nm−1: the low-frequency mode
has a weakly dispersing character and corresponds to a transverse-like dynamics, while
the other mode corresponds to the longitudinal acoustic branch whose sound velocity at
high frequency corresponds to the fast sound. These two important conclusions arise from
a direct comparison between the IXS data for liquid water with those measured for solid
water (ice Ih), and with those obtained by a large-scale molecular dynamics simulation,
which allowed a symmetry analysis as a function ofQ of the two modes. A direct
consequence of these studies is the experimental observation that the high-frequency
collective dynamics of liquid water is equivalent to that of its solid-state counterpart.
This conclusion, associated with the knowledge that the local structure of liquid water is
characterized by a tetrahedral coordination almost identical to that of the solid, tells us that
density fluctuations in the picosecond range in liquid water at ambient conditions evolve as
in an ice Ih structure, and therefore they are very weakly coupled to the degrees of freedom
characteristic of the liquid state: diffusion and molecular reorientation processes.
• The previous point has motivated a detailed IXS study ofS(Q,E) for liquid water as a

function ofQ and temperature at essentially constant density. This work has demonstrated
that, at constant temperature, there exists a positive dispersion of the velocity of sound in
the longitudinal dynamics, whose value evolves in a narrowQ-region from the ordinary
sound value at lowQ to the high-frequency ‘fast’ value at highQ. The transverse-like
excitation, observed at 4–6 meV and weakly depending onQ, is observed only in the high-
frequency limit, i.e. when the solid-like behaviour has been reached and the longitudinal-
like excitations propagate with the ‘fast’ sound. The transition between ordinary and fast
sound is found to be very much dependent on temperature. Specifically, it is found to
move towards higherQ-values when increasing temperature. These experimental results
closely follow previous predictions made on the basis of molecular dynamics simulations.
Moreover, they confirm the suggestion that the transition between the two sound velocities
can be described within the theoretical framework of theα-relaxation process, which has
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been developed to describe a similar dispersion in the sound velocity found in glass-
forming liquids. Unlike the case for these systems, however, for liquid water close to
melting, the frequency range of this transition is one to two orders of magnitude higher.
In this framework, the fast sound corresponds to the infinite sound velocityc∞, and
the ordinary sound velocity to the zero-frequency sound velocityco. In this picture,
the physical mechanism responsible for the transition fromco to c∞ is a rearrangement
of the local structure taking place in a liquid with a characteristic relaxation timeτ .
Considering density fluctuations which have a timescale long with respect toτ , the liquid
is in a completely relaxed state, the vibrational and relaxational degrees of freedom are
in thermodynamical equilibrium, and the predictions of the hydrodynamics theory can be
applied. In the opposite limit, when the density fluctuations are fast with respect toτ ,
the vibrational degrees of freedom cannot exchange energy with the relaxational ones;
the constituent particles behave as if they were displaced from their equilibrium positions
(that ‘slowly’ change with time as dictated by the relaxational dynamics) by the vibrational
degrees of freedom: in this sense, the collective dynamics of the liquid is seen as solid-like.
The use of a simple model, based on a Debyeansatzto visualize the relaxation of the elastic
modulus, has allowed us to extract the value ofτ as a function of temperature (hereafter we
neglect a possibleQ-dependence ofτ ). The derived values are consistent with previous
determinations based on the width of the central peak as measured by the depolarized
Raman technique. Finally, in the temperature range investigated, the values ofτ are also
consistent with an Arrhenius behaviour: the associated activation energy is found to be
comparable to the hydrogen bonding energy of two water molecules. Consequently, one
could speculate that the relaxation mechanism lying at the origin of the transition fromco
to c∞ is determined by the structural rearrangement due to the making and the breaking of
hydrogen bonds. This appealing idea, important because it would provide a direct means
to study the role of the hydrogen bond in the microscopic dynamics of hydrogen-bonded
systems, is at present only a hypothesis. The construction of specific models forS(Q,E),
such as those based on the viscoelastic theory [55], or on the kinetic theory [56], will allow
one to extract more reliable values of the parameters governing the relaxation process,
such asτ(Q, T , ρ) and the strength of the relaxation process itself. The quality of the data,
and the number of thermodynamical points are beginning to be respectively sufficiently
accurate and sufficiently numerous, and in fact some of this analysis work is already in
progress [55,56].

In conclusion, the present article, giving a review of our present understanding of the high-
frequency dynamics of liquid water, has also shown how the new IXS technique can contribute
to the study of unsettled issues in the dynamics of liquids in general. The IXS technique
is, in fact, an experimental method enabling the dynamic structure factor, or, at least, some
crucial parts of it, to be measured. This method, as in the case of well established ones such as
numerical simulation and neutron scattering, provides the possibility of studying from a new
and different point of view the collective dynamics of liquids and disordered systems in general.
We expect, therefore, that with IXS it will be possible to contribute to a better determination
of the interparticle potentials and to improve our understanding of a few unsettled issues, such
as those relating certain macroscopic properties of disordered materials to their microscopic
structure and dynamics.

We conclude this article by going back to water, and noticing how little is known still
on the origin of the many stable and metastable phases of this molecule in both its liquid,
super-critical fluid, and solid forms [8]. It is our hope that this very active field of research will
benefit from the application of the IXS method for investigating the microscopic dynamics of
the H2O molecules as a function of their thermodynamic state.
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